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Breast cancer is the second leading cause of cancer mortality among women in America. Dedicated breast computed tomography 
(CT) has been developed for potential use as an imaging tool for breast-cancer screening or diagnosis, because it can yield 
three-dimensional (3D) volumetric images of the breast, thus overcoming inherent limitations of conventional two-dimensional (2D) 
mammography. Image quality and the radiation dose are of important concerns in breast CT imaging. The objective of this project is 
to investigate and develop innovative imaging configurations and reconstruction algorithms for obtaining accurate images and 
reducing radiation dose in breast CT imaging. In the past year, I have studied and assessed several non-circular configurations that 
could be potentially useful for breast CT imaging by investigating data conditioning techniques and reconstructing images for the 
configurations. I have also conducted preliminary studies using innovative optimization-based algorithms for a potentially substantial 
reduction of radiation dose in breast CT imaging. In addition to computer-simulation studies, I have also performed real data studies 
involving physical phantoms and patient data. In summary, during the first year, I have successfully carried out research on the 
planned tasks, and the results obtained have formed a solid basis for me to continue the research planned for the next year.
Breast CT, image reconstruction, imaging configuration, total variation minimization
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INTRODUCTION

Breast cancer is the most frequently diagnosed cancer and the second leading cause of can-
cer mortality among women in America [1]. Researchers are actively developing breast imaging
techniques, including breast tomosynthesis [2] and dedicated breast computer tomography CT
[3,4], that can form three-dimensional (3D) images of the breast, thus potentially overcoming
inherent limitations of conventional two-dimensional (2D) mammography. Several prototypes of
dedicated breast CT scanners have been built in different institutions throughout US. Current
scanners employ a circular imaging configuration for data collection and the FDK algorithm for
approximate image reconstruction. However, it is well-known that a circular imaging configuration
does not yield sufficient data for mathematically exact image reconstruction. Also, because the
FDK algorithm requires data collected at a large number of projection views, and because the to-
tal dose in breast CT imaging is typically about the same as that in a two-view mammography, the
number of photons collected at each view can be severely limited. As such, the projection data at
each view have very low signal-to-noise ratio (SNR), thus severely limiting the breast-CT-image
quality.

Clearly, image quality and radiation dose are great concerns in breast CT imaging. The ob-
jective of this research is to investigate and develop innovative imaging configurations and recon-
struction algorithms for obtaining accurate images and reducing radiation dose in breast CT imag-
ing. In the past year, my efforts for the project have been supported by a Predoctoral Traineeship
Award, and I have performed research tasks as planned. As discussed below, I have studied and
assessed several potentially useful non-circular configurations for breast CT imaging by investi-
gating data conditioning techniques and reconstructing images for the configurations. I have also
conducted preliminary studies using innovative optimization-based algorithms for a potentially
substantial reduction of radiation dose in breast CT imaging. In addition to computer-simulation
studies, I have performed real data studies involving physical phantoms and patients provided
by the collaborators. In summary, during the first year, I have successfully carried out research
on the tasks planned, and the results obtained have formed a solid basis for me to continue the
research planned for the next year.



BODY

1 Training Accomplishments

At the time of this report, as the recipient of the Predoctoral Traineeship Award, I have taken 20 out
of 20 required courses towards my Ph.D. degree in Medical Physics. The courses include physics
of medical imaging, physics of radiation therapy, mathematics for medical physicists, statistics,
anatomy of the body, radiation biology, and teaching assistant training.

2 Research Accomplishments

2.1 Investigation of non-circular imaging configurations

Current prototype breast CT scanners employ a circular scanning configuration for data acquisi-
tion and the FDK algorithm for approximate image reconstruction. The circular scanning configu-
ration is easy to implement and can provide an efficient coverage of the breast when a flat-panel
detector is used. The FDK algorithm, although it is a mathematically approximate algorithm, re-
mains the widely used algorithm for commercial scanners because of its easy implementation and
computational efficiency. However, the circular imaging configuration yield data that are insuffi-
cient for mathematically exact reconstruction of a three-dimensional (3D) breast. For example,
in an FDK reconstruction, images within two-dimensional (2D) slices away from the source plane
suffer from artifacts such as contrast reduction and streaks, which can lead to an increased false
positive and/or false negative diagnosis. In order to acquire data sufficient for accurate 3D re-
construction, non-circular scanning configurations have been proposed and investigated. In the
first-year research, I have investigated a number of imaging configurations, as described below,
that can yield data sufficient for mathematically exact image reconstruction of the breast.

Helical imaging configuration : The helical imaging configuration is a natural extension of
the circular imaging configuration and it can yield data sufficient for accurate 3D reconstruction of
the breast. In a helical configuration, the X-ray source and detector are translated while they are
rotating, and the source trajectory can be expressed as

~r0(λ) =

(

R cosλ, R sinλ,
h

2π
λ

)T

, (1)

where λ is the view angle, R the distance from the source point to the rotation axis, and h the
pitch of the helical trajectory, which is defined as the translation distance during one turn of rota-
tion. I have investigated the helical configuration using both simulated and real data. The imaging
configuration of our simulation study is identical to that of the prototype scanner at the University
of California , Davis. In the configuration, which has been used to acquire real data of physical
phantom and patient breast, the distances of the source to the detector plane and to the center
of rotation are 87.78 cm and 45.83 cm. The size of the flat-panel detector is 39.7×29.7 cm2

consisting of 1024×768 detector channels. In the simulation study, I have used different digital
phantoms, such as the Defrise disk phantom, to generate data at 500 views using analytic pro-
jection equations of the phantoms for every turn with helical pitches ranging from 3 cm to 11 cm.
I used the disk phantom in the simulation study because it is a challenging phantom that has
been used widely for evaluation of image reconstruction algorithms. I investigated the volume



coverage that can be reconstructed exactly using different helical pitches. The simulation study
results show that smaller pitch needs more turns to cover the same volume and will thus result in
elevated radiation dose to the patient (assuming dose per view is fixed). However, a smaller pitch
can result in better coverage for the volume than larger helical pitch.

I have also investigated and evaluated the helical configurations on the prototype scanner.
From a physical Defrise disk phantom and a sacrificed mouse, data were collected by use of four
different helical pitches ranging from 6 cm to 10 cm. The data acquired from the prototype system
requires several steps of processing so that they can be used for image reconstruction. Data
processing was carried out for removal of data artifacts, including detector-response correction,
reference projection estimation, and physical factor correction. The detector-response correction
compensates for the non-uniform response of detector channels and removes dead/defect de-
tector channels if correction is not possible. The reference projection is a projection acquired in
the absence of the imaged object and is required for the conversion of the raw measurements to
data for image reconstruction. I created the data for image reconstruction by taking the logarithm
of the ratio between reference projection and object projections. I have estimated the reference
projection by choosing the average of pixel values over a region unattenuated by the object and
using the value as a uniform reference projection. The assumptions behind this are that the de-
tector response is uniform and that the object is sufficiently small so that its projection will not fully
cover the detector. I have also compared the volume coverage in real data studies for different
helical pitches. In order to cover the breast volume of a patient, it may require small pitch with
multiple turns because of its better volume coverage, thus radiation dose can be a concern for
such helical configurations. In order to reduce radiation dose, the dose at each view for a helical
configuration need to be reduced. Given the fact that the dose level per view is already low and
that the projection data have significant quantum noise, it seems unrealistic to further reduce the
dose for each view in a helical configuration.

Saddle imaging configuration : Saddle imaging configuration is another configuration that
can generate data sufficient for exact 3D reconstruction of the breast. The saddle configuration
can be interpreted as a generalization of the circular configuration, in which the z-component of
the X-ray source will vary periodically. The saddle trajectory under study can be expressed as

~r0(λ) = (R cosλ, R sin λ, h cos 2λ)T
. (2)

I have studied the saddle imaging configurations using both simulation and real data. The geo-
metric parameters of the simulation system is the same as what was used in the helical imaging
configurations except for that different values of h were used. Again, I have used the Defrise disk
phantom to generate projection data at 500 view over 2π using saddle imaging configurations. I
also added Gaussian random noise terms to the source positions in order to simulate mechanical
inaccuracy of the real system. I have compared projection data and reconstructed images for
different saddle imaging configurations.

I then investigated the saddle imaging configuration on the prototype breast CT scanner. The
implementation of a saddle configuration on the real system requires the X-ray source movement
along the z-axis according to a non-linear function of the rotation angle. Because of mechanical
limitations of motor control, such a non-linear movement can not be implemented directly and has
to be realized through a series of analytically pre-determined source positions. Additional source
positions can be interpolated between two adjacent pre-determined source positions. I have
computed 100 and 250 source positions distributed equally over 2π using an analytic formula of
the trajectory. Based on these pre-calculated source positions, I interpolated additional 400 or
250 source positions for additional data collection. These source positions were used for the
control of the motor and data have been collected from a Defrise disk phantom and a sacrificed



mouse. I also performed detector response correction and reference image conversion on the
projection data, and have investigated the volume coverage of saddle configurations. The results
of the studies indicate that a saddle configuration may have a good coverage for the plane at
z = 0, which is h

2
away from the chest wall.

Circle-plus-line imaging configuration: The circle-plus-line imaging configuration is another
configuration that can yield data sufficient for exact 3D reconstruction of the breast. It can be re-
alized by a linear scan after a circular scan, and it can be readily implemented on the current
prototype scanners. I have studied this imaging configuration using simulation data. In order to
cover the breast, the length for the line scan can be up to 20 cm. The configuration requires the
full coverage of the breast for each view, including the linear part. Thus requiring large detector
size. I generated data at 500 views for the circular scan and 500 views for the line scan from the
digital Defrise disk phantom, and compared its volume coverage to that of the helical imaging con-
figuration and saddle configuration. Our collaborators have also implemented the circle-plus-line
imaging configuration on the prototype scanner, in which the Defrise disk phantom was scanned
at 500 views. I have performed detector response correction and reference image conversion on
the projection data.

Development of targeted region-of-interest imaging approach: I have conducted a pre-
liminary investigation on dynamic collimation to achieve targeted ROI imaging using simulation
studies [5], in which the source and the detector are moved for each view, so that after collima-
tion, the ROI can always be covered by the beam. This imaging approach leads to an imaging
problem with a relatively complex source trajectory and data truncation, which can however be
solved with the back-projection filtration (BPF) algorithm [6,7]. I have used the BPF algorithm to
reconstruct ROI images from truncated data collected with this imaging configuration.

2.2 Investigation and development of novel algorithms tailored to accurate
reconstruction of breast CT images

Data sufficiency condition for breast CT : In breast CT, a half-cone geometry is used for reduc-
ing the radiation dose to the patient torso. This can significantly alter the data sufficiency condition
for image reconstruction of the breast. I have studied the data sufficiency conditions using helical
and other imaging configurations for both full-cone and half-cone geometries. For the study of
half-cone geometry, I first generated simulation data with different helical pitches from the Defrise
disk phantom and compared the reconstruction volume for different imaging configurations. When
the source is close to the chest wall, I removed the part of the projection data that will be blocked
by the patient body. This reduces the volume that can be reconstructed, especially the part near
the chest wall. The study results suggest that the use of a helical imaging configuration with a
half-cone geometry make it difficult to acquire data for reconstructing exactly the region near the
chest wall of the patient.

Noise studies of image reconstruction : In breast CT imaging, because of the radiation con-
cern, the total permissible radiation dose should not exceed that of a conventional mammographic
examination. This can, however, result in data with a low signal-to-noise ratio (SNR) when projec-
tion data are acquired at a large number of views. In addition to statistical noise due to low dose,
noise is also introduced in the signal amplification process and detector electronics, which can
significantly impact the breast CT image quality. In order to study the effect of noise, I have gen-
erated noisy projection data for different imaging configurations, with different levels of Gaussian
noise varying from 0.5% to 5% to represent high to low radiation dose levels. I have investigated
noise properties in images reconstructed by use of FDK and BPF algorithms at different noise
levels .



2.3 Investigation and development of total-variation-based algorithms for
breast CT image reconstruction

Radiation dose in breast CT imaging is an important concern. Further dose reduction in breast
CT can be achieved through collecting data at a reduced number of projection views. When
analytic algorithms such as the FDK and BPF algorithms are applied to sparse-view data, the
reconstruction images will contain artifacts such as streak artifacts that can lower significantly
the image utility. Recently, algorithms based upon the minimization of image total variation (TV)
subject to data condition have been developed for image reconstruction from sparse-view data
[8,9]. I have conducted a preliminary study in which TV algorithms have been exploited for image
reconstruction from sparse-view data in breast CT.

Data calibration and processing : In the case of sparse-view data, data information avail-
able to image reconstruction is limited, and thus it is critically important to make sure that data
information is used correctly. The first issue is to make sure that data geometry is calibrated ap-
propriately. A calibration method has been developed to obtain data geometric parameters from
multiple projections of metal ball-bearing (BB) objects. Assuming that the system has a mechan-
ically stable rotation center and that the detector is generally within the rotation plane, one can
derive the geometrical relationship between the orbital paths of the individual balls for determining
data geometric parameters. The calibration process consists of identifying the center position of
BBs projection at each view, determining the ball orbits, and relating them to the system geome-
try parameters. I have further refined and validated the calibration parameters using programs for
data consistency check and image reconstruction. Under certain conditions, the programs can
determine the projection of the source on the detector plane to be within the size of a detector
channel.

TV-based image reconstruction : Using the real patient breast data obtained from our col-
laborators at the University of California at Davis, I have performed a preliminary investigation
of image reconstruction from sparse-view data in breast CT [10] (Appendix B). In the study, I
have added projections generated from small spheres that simulate micro-calcification clusters
(MCCs) to the patient data. The contrast levels of the simulated MCC structures are about 0.5
to 1 times of that of the background glandular tissues. Furthermore, I have investigated noise
properties in images by reconstructing them from data on individual detector rows or from data
averaged over a number of detector rows. In the latter case, the noise level in projection data
is effectively reduced. The patient data sets contain projections collected at 500 views uniformly
distributed over 2π. In the sparse-view data study, I first formed sparse-data sets by extracting
from 500-view patient data set at 25 and 50 views uniformly distributed over 2π. I then used both
TV and FDK algorithms to reconstruct images from the extracted sparse-view data sets. The
reconstruction results indicate that the TV algorithm can yield generally higher contrast levels of
the MCC structures than does the FDK algorithm. This conclusion applies to both data with and
without averaging as discussed above. An implication of the study is that the TV algorithm can be
employed for potentially reducing substantially the total radiation dose in breast CT.

2.4 Evaluation of the proposed configurations and algorithms

The evaluation study is planned largely for years 2 and 3. However, I have carried out preliminary
studies on data and image noise properties this year to lay out the basis for the planned evaluation
studies in the next year.

Digital breast phantom: One of the important tools in evaluation studies is the availability of
digital breast phantoms containing structures with different levels of complexity. I have created



and modified two breast phantoms that consist of a half-ellipsoid object wrapped by simulated
skin. The half-ellipsoid contains a compound of adipose and glandular tissue, which is also ap-
proximated by ellipsoids of different sizes. Spheres with strong attenuation (i.e., high contrast)
of different sizes that mimic MCCs have also been included in the phantoms. Specifically, in a
typical MCC, the smallest calcification is about 200 µm, and a MCC typically includes 3 to 10
simulated micro-calcifications. The MCCs have been added to the glandular tissues and the axil-
lary tail of the breast. From the digital breast phantoms, I have generated projection data at 500
views uniformly distributed over 2π using a circular imaging configuration that is currently used by
our collaborators. I have also generated noisy data by adding Gaussian noise to the simulated
data. The digital breast phantoms and simulation tools developed provide a solid basis for the
evaluation study planned for the next year.

Noise study of ROI-imaging approach: I have studied the noise properties in images recon-
structed by use of the BPF algorithm in a simulation study, in which a uniform cylinder phantom is
used to generate 1000 noisy data sets containing Gaussian noise. From the 1000 noisy data sets,
I first reconstructed noisy images using the BPF algorithm and then computed empirical image
variances and covariances. The results show that the noise level within an ROI is non-uniform
and that the image noise level in the center-of-rotation region is generally lower than that in other
regions. Therefore, it is important to design an imaging configuration such that the ROI can be
placed near the center of rotation.



KEY RESEARCH ACCOMPLISHMENTS

• I have investigated and evaluated helical, saddle, and circle-plus-line imaging configurations
for potential use in breast CT.

• I have carried out a preliminary investigation on dynamic collimation for ROI imaging using
simulation data.

• I have modified and developed a BPF algorithm for image reconstruction from data acquired
with non-circular imaging configurations in breast CT.

• I have modified and developed a BPF algorithm for image reconstruction from simulation
data acquired in an imaging configuration employing dynamic collimation.

• In working with the collaborators, projection data of physical phantoms have been collected.

• In working with the collaborators, projection data of patient breasts have been collected.

• I have performed a preliminary investigation on potential dose reduction by lowering the
number of projection views in breast CT.

• I have created digital breast phantoms with different structures and micro-calcification clus-
ters, which can be used for quantitative evaluation of imaging configurations and reconstruc-
tion algorithms.



REPORTABLE OUTCOMES

Peer-reviewed Journal Articles

1. J. Bian , D. Xia, E. Y. Sidky, X. Pan: “Region of interest imaging for a general trajectory with
the rebinned BPF algorithm”, Tsinghua Science and Technology, Vol 15, pp 68-73, 2010.

2. J. Bian , X. Han, E. Y. Sidky, G. Cao, J. Lu, O. Zhou, X. Pan: “Investigation of sparse
data mouse imaging using micro-CT with a carbon-nanotube-based X-ray source”, Tsinghua
Science and Technology, Vol 15, pp 74-78, 2010.

Conference Proceeding Articles

1. J. Bian , X. Han, E. Y. Sidky, G. Cao, J. Lu, O. Zhou, X. Pan: “Investigation of sparse-data
mouse imaging using micro-CT with a carbon-nanotube X-ray source”, Proceeding of 10th
International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and
Nuclear Medicine, Beijing, China, 2009

2. J. Bian , X. Han, E. Y. Sidky, D. Tward, J. H. Siewerdsen, X . Pan: “Sparse data reconstruc-
tion of flat-panel cone-beam CT for potential use in Image-guided surgery”, Proceeding of
10th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology
and Nuclear Medicine, Beijing, China, 2009

Conference Presentations and Abstracts

1. J. Bian , X. Han, K. Yang, N. Packard, E. Sidky, J. Boone, X. Pan: “A feasibility study of
breast CT imaging with substantially lowered radiation dose”, 2009 IEEE Nuclear Science
Symposium and Medical Imaging Conference, Orlando, FL, Oct-2009



CONCLUSIONS

As the recipient of the Predoctoral Traineeship Award, I have finished the required courses
towards my Ph.D. degree. These trainings have proven useful for me to achieve the proposed
research goals.

During the first year, I have investigated and evaluated non-circular imaging configurations
potentially useful for breast CT imaging by studying data sufficiency conditions and by performing
both simulation and real data studies. I have developed and modified BPF algorithms to recon-
struct images within an ROI from data containing truncations. The modified BPF algorithm can
yield more accurate images than the existing FDK algorithm. In an attempt to further reduce
imaging dose, one may reduce the number of views at which projection data are collected. In this
situation, analytic algorithms may not provide adequate results. Instead, I have developed, modi-
fied, and implemented the TV algorithm to reconstruct images from sparse-view data. Also, I have
created digital breast phantoms that can be used as an important tool for evaluation of the poten-
tial utility of imaging configurations and reconstruction algorithms. Furthermore, I have performed
a preliminary evaluation study of different reconstruction algorithms in which both simulation and
real data were used.

In summary, I believe that I have achieved the goals planned for the first year and laid down the
foundation for the research in the next two years. The aims in the next two years include further
development of the TV algorithm for image reconstruction in low-dose breast CT, investigation
of the effects of physical factors on the quality of image reconstruction, and performance of well
designed evaluation studies.
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Abstract: The back-projection-filtration (BPF) algorithm has been applied to image reconstruction for 

cone-beam configurations with general source trajectories. The BPF algorithm can reconstruct 3-D region-    

of-interest (ROI) images from data containing truncations. However, like many other existing algorithms for 

cone-beam configurations, the BPF algorithm involves a back-projection with a spatially varying weighting 

factor, which can result in the non-uniform noise levels in reconstructed images and increased computation 

time. In this work, we propose a BPF algorithm to eliminate the spatially varying weighting factor by using a 

rebinned geometry for a general scanning trajectory. This proposed BPF algorithm has an improved noise 

property, while retaining the advantages of the original BPF algorithm such as minimum data requirement.   
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Introduction 

Significant advances have been made in the develop-
ment of theoretically exact algorithms for image re-
construction from cone-beam projections. Theoretically 
exact algorithms that were developed initially for a 
helical trajectory[1-3] have been extended to reconstruct 
images from cone-beam projections acquired with 
general source trajectories[4-8]. The back-projection-    
filtration (BPF) algorithm is one of the recently devel-
oped algorithms[9-11]. It can be applied to reconstruct-
ing images for a wide class of general scanning trajec-
tories and is capable of reconstructing an image within 
a region-of-interest (ROI) from projection data con-
taining truncations. This property of the BPF algorithm 

allows imaging applications of practical significance. 
For example, in non-conventional computed tomogra-
phy (CT) applications, it is not uncommon that the 
available detector covers only a portion of a field of 
view (FOV) that is needed otherwise for completely 
covering the entire support of the imaged object. More-
over, data acquisition in many practical applications is 
achieved through the rotation of the object around the 
physical center of rotation, which is often chosen as the 
center of mass of the object and may be at a distance 
from the FOV center, as shown in Fig. 1. Although this 
imaging approach leads to an imaging problem with a 
relatively complex source trajectory and data truncation, 
one can apply the BPF algorithm to reconstructing an 
ROI image from truncated data collected with this kind 
of imaging configurations with general trajectories[12].  

Like many existing algorithms for divergent-beam 
configurations, the original BPF algorithm also in-
volves the computation of a spatially varying weight-
ing factor in its back-projection step, which can result 
in non-uniform noise levels in reconstructed images 
and increased computation time[13-16]. Therefore, it is 
desirable to eliminate the spatially varying weighting  
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Fig. 1  Illustration of the 3-D imaging configuration. 
The object rotates around the rotation axis O. The 
source can move freely vertically and horizontally 
while the detector can only move horizontally. The re-
gion enclosed by the dashed curve indicates the FOV 
covered by the detector. 

factor in the BPF algorithm for improving its noise 
properties and computational efficiency. In this work, 
based upon the original BPF algorithm, we propose a 
BPF algorithm in terms of a rebinned geometry for a 
general scanning trajectory designed for ROI imaging, 
in which no spatially varying weighting factor is in-
volved in the back-projection step. The use of the re-
binned geometry can not only eliminate the spatially 
varying weighting factor, thus improving the noise 
properties of BPF reconstructions, but also retain the 
properties of the original BPF algorithm such as 
minimum data requirement and ROI-image reconstruc-
tion from truncated data.  

1  New ROI Imaging Approach  

1.1  Design of an ROI imaging approach 

We display in Fig.1 a 3-dimensional (3-D) scanning 
configuration under consideration, in which the object 
rotates around the rotation axis, the source can   
move freely vertically and horizontally, and the detec-
tor can only move horizontally. The line connecting the 
source and the detector center is always perpendicular 
to the detector plane. A sketch of this scanning geome-
try within 2-dimensional (2-D) slice at 0z =  is 

shown in Fig. 2. An ellipsoid support enclosed by the 
thin curve represents the imaged object in which an 
ROI is indicated as the shaded region, and the FOV is 

enclosed by a thick curve. The geometric center of the 
ellipsoid is placed at the physical center of rotation of 
the imaging system, which is also chosen as the origin 
of the fixed coordinate system. We assume that the 
distance of the FOV center to the physical center of 
rotation is 0R , that the width of the detector is 2D , 

and that the distance H  between the physical center 
of rotation and the detector remains constant. Let R  
denote the radius of the FOV. Clearly, R D<  for the 
cone-beam projection under consideration. Projections 
at different views are collected through the rotation of 
the object about the physical rotation center and the 
motion of the source and detector in the space, which 
is constrained by two conditions: (1) the size of the 
FOV (enclosed by the thick curve) formed by the 
source and detector remains unchanged and always 
covers the ROI, and (2) the source point, the FOV 
center, and the detector mid-point always remain on 
the same line, which, without loss of generality, is as-
sumed to be perpendicular to the detector plane. An 
additional constraint on the source is that it is outside 
the rotating object.  

 
Fig. 2  Illustration of the scanning geometry within 
2-D slice at z = 0 . The support of the imaged object is 
enclosed by the thin curve. During imaging, the object 
rotates around the physical center of rotation. The ROI 
(shaded area) to be imaged is within the FOV (enclosed 
by the thick curve) formed by the source and the de-
tector. When the object is rotated, the detector can 
move only along x-axis, whereas the source can move 
along x- and/or y-axes so that the FOV always cov-
ers the ROI completely. 

1.2  Source trajectory 

When the imaged object rotates, the source and the 
detector are moved accordingly so that they form an 



  Tsinghua Science and Technology, February 2010, 15(1): 68-73 

 

70 

FOV that always covers the ROI. Consequently, the 
location of the FOV center also changes. Considering 
the motion constraints on the source and detector de-
scribed above, one can determine the trajectories of the 
source, the FOV center, and the mid-point of the de-
tector in the x-y plane. Let λ  denote the rotation an-

gle of the object, which is defined as the angle between 
the long axis of the ellipsoid object and the x axis. 
Therefore, the trajectories of the FOV center 

F F F( , , )x y z  and detector center D D D( , , )x y z  in the 

fixed coordinate system can be expressed as  

F F F 0 0( , , ) ( cos , sin ,0)x y z R Rλ λ=      (1) 

D D D 0( , , ) ( cos , ,0)x y z R Hλ= −       (2) 

Also, one can express the source trajectory s( )λr  in 

the fixed coordinate system as  

s s s s 0 s0( ) ( , , ) ( cos , ,0)x y z R yλ λ= =r       (3) 

where s0 1 2tan( ) ,y D Hφ φ= + −  and  

0
1

sin
arctan

H R
D

λφ +
=            (4) 

2 2 2 2
0

arctan
( sin )

R
D H R R

φ
λ

=
+ + −

     (5) 

As shown in Fig. 2, 1φ  is the angle between the x axis 

and the line connecting the FOV center and the detec-
tor edge, and 2φ  indicates the angle between the line 

connecting the FOV center and the detector edge and 
the line connecting the source and the detector edge.  

Considering the physical constraint that the source 
cannot be within the object, we assume that the object 
support has a cylindrical shape, which has the same 
middle transverse slice as the ellipsoid object. Assum-
ing that the long axis of the ellipsoid object is aligned 
with the x axis when 0,λ =  we can rewrite the source 

trajectory in Eq. (3) as  

s s s s( ) ( , , )x y zλ = =r  

0 0 s0 0( cos , sin max( sin , ),0)R R y R tλ λ λ+ −    (6) 

where  
2

0 0
2 2 2 2

sin ( , , ; )

cos sin

b R T a b Rt
a b

λ λ
λ λ

− +
=

+
       (7) 

and  
4 2 2 2 2 2 2 2 4 2

0 0( , , ; ) cos cos sinT a b R a b a b R a bλ λ λ λ= − +  

(8) 
In general, reconstruction algorithms are developed 

for imaging configurations in which the object is fixed. 
Therefore, we need to determine the source trajectory 
in a coordinate system in which the object is fixed so 

that these algorithms can be applied directly. In the 
case under study, we refer to the coordinate system 
fixed on the object as a object-fixed coordinate system 

0 0 0( , , )x y z , which can be related to the original coor-

dinate system ( , , )x y z  described above as  

0 0 0

cos sin 0

( , , ) ( , , ) sin cos 0

0 0 1

x y z x y z
λ λ
λ λ

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (9) 

Using s ,x s ,y and sz  to replace ,x ,y and z  in the 

right-hand-side of Eq. (9), one can obtain the expres-
sion of the source trajectory 0 0 0 0( ) ( , , )x y zλ =r  in the 

object-fixed coordinate system, which is displayed in 
Fig. 3.  

 
Fig. 3  Illustration of the scanning geometry in the 
object-fixed coordinate system. The thin solid and 
dashed lines represent the source trajectory and de-
tector center trajectory respectively. The FOV is en-
closed by the thick curve (shaded area). 

2  BPF Algorithm for ROI-Image 
Reconstruction 

2.1  Original BPF algorithm 

In order to describe the original BPF algorithm, we 
introduce a rotation-coordinate system { , , }u v w ， 

whose origin is fixed on the source point for the con-
venience of the reconstruction. Its three unit vectors in 
the fixed-coordinate system are 

T(cos , sin , 0)ˆu λ λ= −e , 
T(0, 0, 1)ˆv =e , 

T(sin , cos , 0)ˆw λ λ=e          (10) 

Consider a flat-panel detector with its normal direc-
tion along ˆwe  and at a distance S  from the source 

point. A 2-D coordinate system { , }u v  is assumed to 

be fixed on the detector plane and the u and v axes are 
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along the unit vectors ˆue  and ˆve . Any point on the 

detector can thus be specified by two parameters u  
and .v  At source position λ , the cone-beam projec-
tion of the object function ( )f r  at a point d d( , )u v  

on the detector can be expressed as 

0d d 0

ˆ( , , ) ( ( ) )dP u v f t tλ λ β
∞

= +∫ r        (11) 

where  

d d2 2 2
d d

1ˆ [ ( ) ( ) ( )]ˆ ˆ ˆu v wu v S
u v S

β λ λ λ= + −
+ +

e e e  (12) 

is a unit vector indicating the direction of the ray that 
starts from source points 0( )λr  and passes through 

the point ( , )u v  on the detector.  

The original BPF algorithm can reconstruct ROI 
images from truncated data acquired with a general 
trajectory by reconstructing images on chords. For a 
given continuous trajectory, a chord is a line segment 
connecting two points 0 a( )λr  and 0 b( )λr  on the 

trajectory. The form of the original BPF algorithm used 
here is given in Ref. [8], and the image on the chord 
specified by aλ  and bλ  is given by  

c 2

c1

c c a b 2
c

c c
c c a b 0

c c

1 1
( , , )

2π ( )

( )d
( , , ) 2π

x

x

f x
b x

b x x g x P
x x

λ λ

λ λ

=

⎡ ⎤′ ′
′ + ,⎢ ⎥′−⎣ ⎦

∫

∙

 

where c c2 c c c1( ) ( )( )b x x x x x= − −  and 0P  denotes 

the projection data along the chord. c c a b( , , )g x λ λ  is 

defined by the following equation, 
b

a
c c a b d d

ˆ0c

d d
( , , ) ( , , )

| ( ) ( )| d
g x P u v

x
λ

λ
β

λλ λ λ
λ λ

=
−∫ r r

 (13

) 
By use of the original BPF algorithm, one can re-

construct ROI images from the truncated data acquired 
with the source trajectory described in Section 1. It can 

be observed that the weighting factor 
0c

1
| ( ) ( ) |x λ−r r

 

in the back-projection step (i.e., Eq. (13)) is spatially 
varying, which can result in the increased noise level 
and computation load. We seek to eliminate such a 
factor by using the rebinned geometry, as discussed 
below.  

2.2  Rebinned BPF algorithm 

In the rebinned BPF algorithm, the acquired projection 

data are first rebinned into the fan-parallel-beam    
geometry[17-20]. The rebinned data can be expressed as 

d d( , , )Q u v ϕ′  satisfying  

d d d d( , , ) ( , , )Q u v P u vϕ λ′ =         (14) 

given that  

darctan
u
S

ϕ λ= −            (15) 

By using this relationship, the weighting factor 

0c

1
| ( ) ( ) |x λ−r r

 in Eq. (13) can be eliminated.  

3  Numerical Studies 

We have performed computer-simulation studies to 
investigate and evaluate the rebinned BPF algorithm 
for achieving an ROI reconstruction for the trajectory 
described in Section 2. The numerical phantom is 
modified from a standard Shepp-Logan phantom. The 
center of the standard Shepp-Logan phantom is first 
shifted to the center of the FOV and the size of the 
Shepp-Logan phantom is then scaled to fit the size of 
the FOV. A long narrow ellipsoid object is placed at the 
rotation center which connects the Shepp-Logan phan-
tom to the rotation axis. To cover the ROI, the FOV 
has a radius 30R =  cm and is at a distance 0 50R =  cm 

from the physical center of rotation, and the detector 
has a size of 64D =  cm and is placed at a distance 
from the x axis at 100H =  cm. The detector has 
512 512×  units. Using these parameters in the imag-

ing configuration, we computed cone-beam projection 

data from the rotating object at 720 views from π
5

−  

to 6π
5

, from which, noisy data were generated by 

adding Gaussian noise with a standard deviation that is 
about 1 5%.  of the maximum projection value. From 

these noiseless and noisy data sets, we have recon-
structed the ROI images. In Fig. 4, we displayed the 
images reconstructed from the noisy data by use of 
rebinned and original BPF algorithms.  

We have also performed a study to investigate the 
noise properties of the rebinned BPF. In this study, a 
uniform cylinder phantom was used. From the uniform 
phantom, we generated 1000 sets of the data contain-
ing stationary Gaussian noise. Without loss of general-
ity, we focus on reconstructing images on a set of 

chords specified by 1
π
4

λ =  and 2
5ππ,
4

λ ⎡ ⎤= ⎢ ⎥⎣ ⎦
. Using 
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the 1000 images on these chords reconstructed from 
the noisy data sets, we calculated the empirical image 
variances on the chords. For comparison, the empirical 
image variances are obtained from the reconstructed 
images by use of the original BPF algorithm. The im-

age variances along the chord specified by 1
π
4

λ =  

and 2
6π
5

λ =  are displayed in Fig. 5. It can be ob-

served that the rebinned BPF algorithm generally 
yields images with lower and more spatially uniform 
variances than does the original BPF algorithm. This 
uniform noise property in images obtained by use of 
the rebinned BPF algorithm is a direct result of     
the elimination of the spatially varying weighting   
factor from the back-projection in the rebinned BPF 
algorithm.  

 
Fig. 4  The noisy images obtained with the rebinned 
BPF algorithm (top row) and the original BPF algo-
rithm (bottom row) within the 2-D slices at x=0 mm, 
y=0 mm, and z=0 mm. The display window is [0.98, 
1.2]. 

 
Fig. 5  Image variances on a chord, specified by 

λ =1
π
4−  and λ =2

6π
5 , obtained by use of the re-

binned BPF algorithm (dashed line) and original BPF 
algorithm (solid line) 

4  Conclusions 

In the work, we have described a rebinned BPF algo-
rithm, which involves no spatially varying weighting 
factor in its back-projection step, for ROI-image   
reconstruction from truncated data acquired with a 
general trajectory. We have performed computation-   
simulation studies to validate and evaluate the rebinned 
BPF algorithm. The quantitative results demonstrate 
that the exact ROI-image reconstruction can be ob-
tained with the rebinned BPF algorithm. Most impor-
tant, the rebinned BPF algorithm can improve the noise 
properties in terms of image variances. It may find 
practical implications in numerous non-conventional 
CT scans involving general trajectories.  
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Image Re
onstru
tion for Breast CT Using SparseProje
tionsJunguo Bian, Xiao Han, Kai Yang*, Nathan Pa
kard*, Emil Y. Sidky, John M. Boone* and Xiao
huan PanDepartment of Radiology, The University of Chi
ago5841 S Maryland Avenue, Chi
ago, IL 60637*University of California Davis Medi
al Center4860 Y Street, Sa
ramento, CA 95817I Introdu
tionBreast 
an
er is the most frequently diagnosed 
an-
er and the se
ond leading 
auses of 
an
er mortalityamong woman. Resear
hers are a
tively developingx-ray breast imaging te
hniques that 
an form three-dimensional image of the breast, in
luding breast to-mosynthesis and dedi
ated breast 
omputer tomogra-phy CT. Several prototype dedi
ated breast CT s
an-ners have been built in di�erent institutions through-out US. Most of the s
annesr have a 
ir
ular 
on�gura-tion and adopted an approximate analyti
 re
onstru
-tion algorithm, whi
h requires a large number of viewsto be a
quired. The total dose of a breast CT s
an isnormally about the same as a two-view mammogram.It is still desirable to further redu
e the breast CTdose for general s
reening purpose.Inspired by the prin
iple of 
ompressive sensing,we have proposed algorithms for image re
onstru
-tion from fan- and 
one-beam data 
olle
ted at highlysparse views through minimization of the total varia-tion (TV) of the image subje
t to the 
ondition thatthe estimated data is 
onsistent to the measured data.The advantage of our TV minimization algorithm isthat by redu
ing the number of views, total dose 
anbe redu
ed signi�
antly. In this study, we investigatethe sparse data re
onstru
tion for breast CT by usingvery few proje
tions. The aim of this study is to per-form a preliminary investigation to further redu
e thedose of breast CT for breast 
an
er s
reening.II Materials and MethodsThe breast CT data were a
quired by a 
lini
al trial
ondu
ted by our 
ollaborator at UC-Davis medi
al
enter. The prototype s
anner 
onsists of a water-
ooled tungsten anode x-ray tube, a �at-panel CsI in-dire
t x-ray dete
tor that was 40 
m wide and 30 
mtall and an integrated bearing-motor-en
oder system.The dete
tor has a pixel matrix of 1024 × 768, withpixel size of 0.388 mm. The sour
e to dete
tor dis-tan
e is 87.78 
m and the sour
e to rotation 
enteris 45.83 
m. For ea
h data sets, 500 
one-beam pro-

je
tion images are a
quired 360◦ around the patient'sbreast in 16.6 se
onds.In the TV algorithm, the imaging system is mod-eled by a dis
rete linear system ~g = M ~f, where ~gis the measured, ~f denotes the dis
rete image and
M is the system matrix. The TV algorithm is for-mulated into a 
onstrained TV-minimization frame-work, whi
h seeks to �nd image ~f that minimizes itsTV: ~f∗ = argmin

∥

∥

∥

~f
∥

∥

∥

TV
, subje
t to the data �delityand non-negativity 
onstraints. The proposed TV al-gorithm solves this 
onstrained optimization problemthrough using a hybrid s
heme in whi
h the proje
-tion onto 
onvex sets (POCS) is used to enfor
e thedata 
onstraint, and gradient des
ent method is usedsubsequently for minimizing the image TV.In order to investigate the performan
e of the TValgorithm, we extra
t the mid-sli
e sinogram from thepatient data and add simulated sinogram. The simu-lated sinogram is generated by analyti
 phantom withexa
tly the same geometry as the prototype breast CTs
anner. The analyti
 phantom 
onsists of small ellip-sis to mimi
 small stru
tures in the breast with theirsizes varying from 0.5 mm to 1.3 mm. The intensity ofthe stru
tures are about 0.5 to 1. times of the intensityof the ba
kground glandular tissues. The modi�ed pa-tient breast image is shown in the �rst 
ollumn of Figs1 to 4 and the white dots show the small stru
tures,the intensity of the small stru
tures are about 1.5 to2 times of the ba
kground tissues.In order to study the e�e
ts of the noise, we alsoaverage mid-sli
e sinogram with its two neighboringdete
tor rows to form the new mid-sli
e sinogram andadd simulated sinogram to this new sinogram. By av-eraging, the noise level in the proje
tion data is e�e
-tively redu
ed. From the full 500 views of proje
tiondata sets of the mid-sli
e sinogram with and withoutaveraging, we extra
t 25 and 50 views of proje
tiondata whi
h are uniformly distributed from 0 to 360◦.We used both TV and FDK algorithms to re
onstru
timages from these four sparse data sets. The re
on-stru
tion image size is 15×15 cm2and the 
orrespond-ing image array size is 512× 512.1



Be
ause the total dose of breast CT need to be dis-tributed over a large number of views (usually severalhundred), there are 
onsiderable quantum noise in theimages re
onstru
ted dire
tly by FDK algorithms . Sowe applied a hanning �lter to the images re
onstru
tedby FDK algorithms. For TV, we take the images atthe 40th iteration. III ResultsIn Figs. 1 to 4, we displayed the images re
on-stru
ted by use of TV and FDK for the mid-sli
e sino-gram and the averaged sinogram. In Fig 1., the 25-view FDK re
onstru
tion is 
learly overwhelmed bythe streaks 
aused by aliasing and it is very di�
ultto di�erentiate between real stru
tures and artifa
ts.However, the image re
onstru
ted by TV algorithm isfree of streak artifa
ts and some of the stru
tures 
anbe easily identi�ed . In Fig 2., we displayed the TVand FDK re
onstru
tion from the 25-view averagedsinogram. Both the FDK re
onstru
tion and TV re-
onstru
tion be
ome better in this 
ase. However, theFDK image is still dominated by the streak artifa
ts,while almost all four groups of the small stru
tures 
anbe identi�ed in the TV re
onstru
tion image. In Fig3, we displayed the TV and FDK re
onstru
tion fromthe 50-views of proje
tion data without averaging .There are still artifa
ts 
aused by aliasing and the ar-tifa
ts have very 
lose appearan
e to the small stru
-tures, whi
h will 
aused many false positives. Whilein the TV re
onstru
tion images, the stru
tures 
anbe visualized mu
h better and all the stru
tures 
anbe identi�ed in the image. In Fig. 4, we displayed theTV and FDK re
onstru
tion from the 50-views aver-aged sinogram. The visualization of the stru
tures arealmost the same in this 
ase.
Fig. 1. Image re
onstru
ted by TV (middle) and FDK (right) algo-rithms using 25 views of proje
tion data without averaging. The modi�edbreast image (left) shows the small stru
tures. The display window is
[0.15, 0.28] cm

−1.

Fig. 2. Image re
onstru
ted by TV (middle) and FDK (right) algorithmsusing 25 views of proje
tion data from the averaged sinogram. The mod-i�ed breast image (left) shows the small stru
tures. The display windowis [0.15, 0.28] cm
−1.

Fig. 3. Image re
onstru
ted by TV (middle) and FDK (right) algo-rithms using 50 views of proje
tion data without averaging. The modi-�ed breast image (left) shows thesmall stru
tures. The display window is
[0.15, 0.28] cm

−1.
Fig. 4. Image re
onstru
ted by TV (middle) and FDK (right) algorithmsusing 50 views of proje
tion data from the averaged sinogram. The mod-i�ed breast image (left) shows the addtitional small stru
tures. The dis-play window is [0.15, 0.28] cm

−1.IV Dis
ussionA preliminary study of sparse data re
onstru
tionfor breast CT using TV minimization algorithm is per-formed by using real patient data with adding smallstru
tures added to the breast. By 
omparing theFDK re
onstru
tion and TV re
onstru
tion, it 
an beseen that the stru
tures 
an be visualized mu
h betterin image re
onstru
ted by TV algorithm than the im-ages re
onstru
ted by FDK for 25 views of proje
tiondata of the two di�erent noise levels sin
e the streakartifa
ts dominated the FDK re
onstru
tion. For im-ages re
onstru
ted from 50views of proje
tion data,the streak artifa
ts are not a serious issue any more.However, the TV re
onstru
tion is still better in vi-sualization of the small stru
tures for the sinogramwithout averaging while the visualization is about thesame for images re
onstru
ted by TV and FDK fromthe 50-view averaged sinogram. This study demon-strate that the breast CT dose 
an potentially be re-du
ed to a very low level for s
reening purpose by useof very sparse proje
tion data.2
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